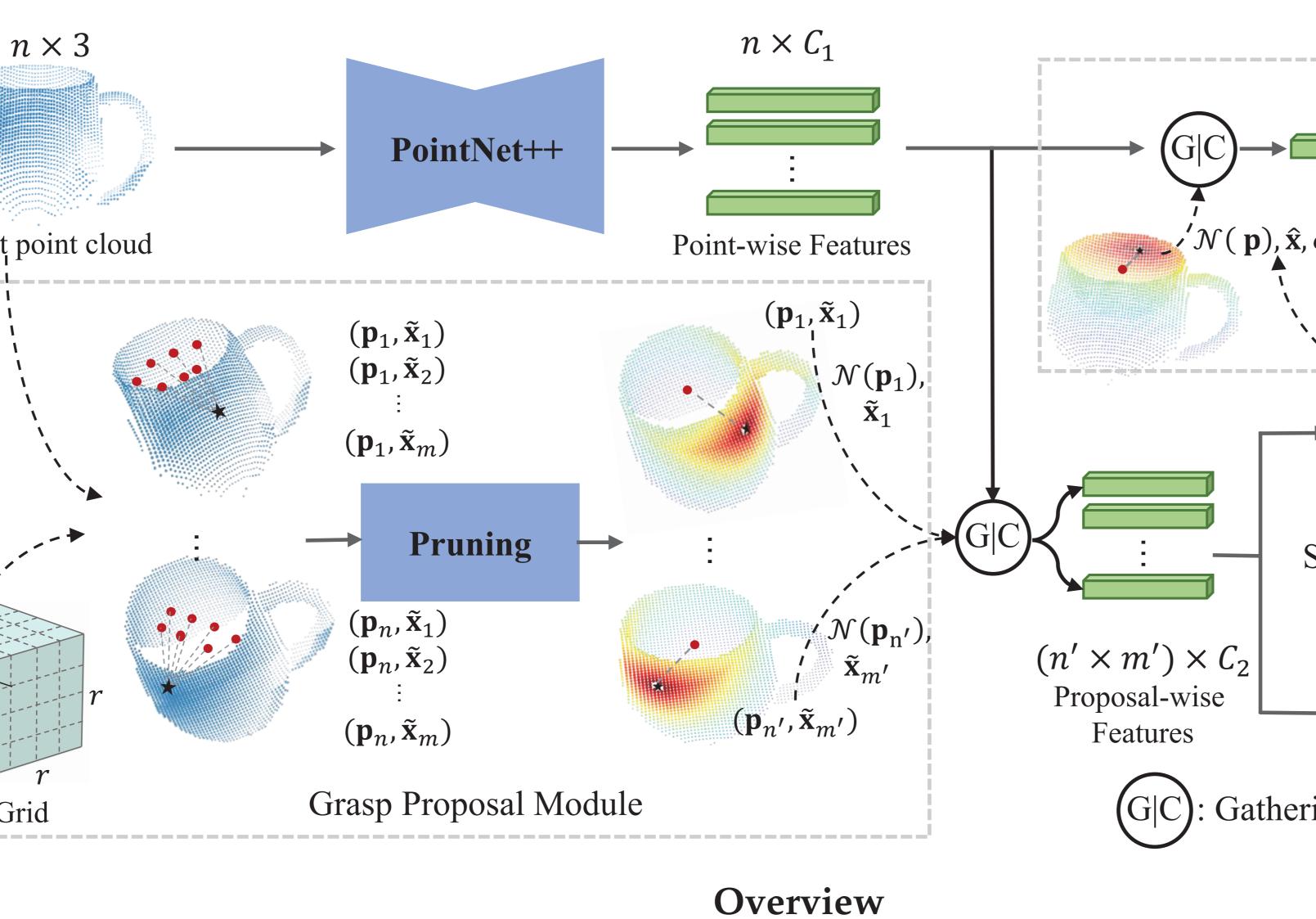


Grasp Proposal Networks: An End-to-End Solution for Visual Learning of Robotic Grasps

Introduction	Method
Visual Grasp Learning (VGL)	Grasp Pro
How to interact with it? Learn to grasp from observation (image or point cloud).	Object
Existing Methods	
Sampling based:	
image/pc $\xrightarrow{\text{sampling}}$ $\xrightarrow{\text{grasp}}$ $\xrightarrow{\text{Neural}}$ $\xrightarrow{\text{Neural}}$ scores	
 Pros: easy to learn. 	r 3DG
 Cons: a) finite number; b) may miss optimal grasps; c) time consuming. 	Features E
Generation based:	• Each p
$\frac{\text{image/pc}}{\text{Neural}} \rightarrow \frac{\text{Neural}}{\text{Network}} \rightarrow \frac{\text{scores}}{\text{Network}}$	centers
Network grasps	Pair upPrunin
 Pros: a) can generate a large number of grasps; b) can learn the optimal grasps; c) fast. 	 Ancho We use
• Cons: a little hard to learn.	
6-DOF Grasp Representation	
	(a)
$\Leftrightarrow \qquad \qquad$	
$\frac{\mathbf{x}}{\mathbf{\theta}}$	Antipodal
$ \begin{array}{l} \mathbf{g} = (\mathbf{x}, \mathbf{\theta}) & \mathbf{g} = (\mathbf{c}_1, \mathbf{x}, \phi) \\ \mathbf{x} \in \mathbb{R}^3 & \mathbf{c}_1, \mathbf{x} \in \mathbb{R}^3 \\ \mathbf{\theta} \in [\pi, \pi]^3 & \phi \in [\pi, \pi] \end{array} $	To check v
	Grasp Reg
	For the an
	Grasp Cla
paper code	We train a used as inpu

Chaozheng Wu*, Jian Chen*, Qiaoyu Cao, Jianchi Zhang, Yunxin Tai, Lin Sun, Kui Jia[†]

roposal Network (GPNet)



Extraction - We use PointNet++ to extract features for each point.

oposal

point \mathbf{p}_i on point cloud can be a contact point; the vertices $\tilde{\mathbf{x}}_j$ of 3D grid can serve as anchors of grasp

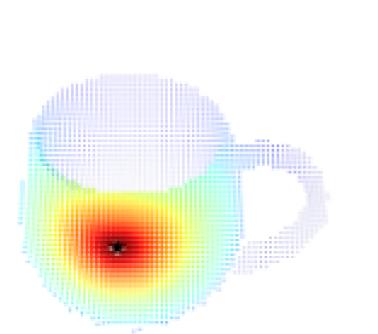
up \mathbf{p}_i and $\tilde{\mathbf{x}}_j$, $(\mathbf{p}_i, \tilde{\mathbf{x}}_j)$ is our called grasp proposal.

ing: a) remove the vertices out of the bounding box of object; b) remove some proposals far away from GT ations.

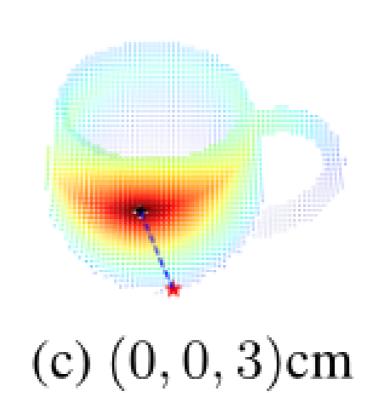
or-dependent grasp features extraction:

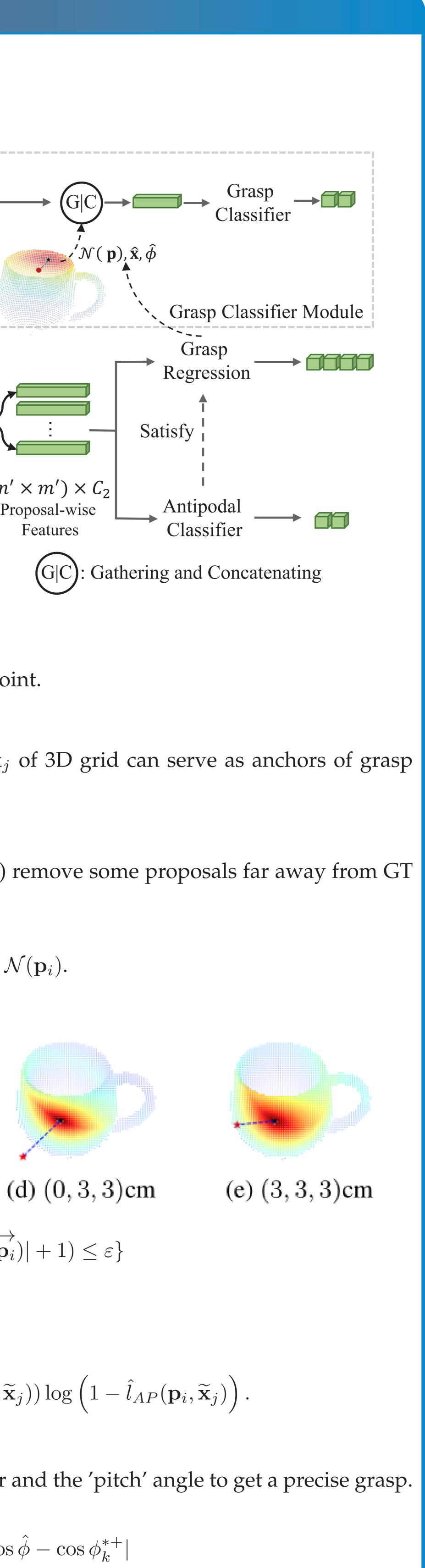
se an anchor-dependent manner to determine \mathbf{p}_i neighborhood $\mathcal{N}(\mathbf{p}_i)$.

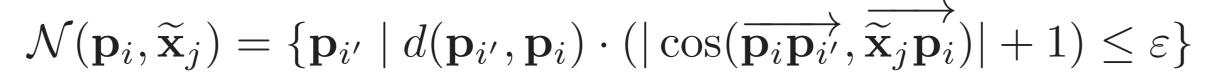
Mug



(b) Distance-only







l Classifier

whether the grasp proposal satisfy the antipodal constraint.

$$\mathcal{L}_{AP}(\mathbf{p}_i, \widetilde{\mathbf{x}}_j) = -l_{AP}^*(\mathbf{p}_i, \widetilde{\mathbf{x}}_j) \log \hat{l}_{AP}(\mathbf{p}_i, \widetilde{\mathbf{x}}_j) - (1 - l_{AP}^*(\mathbf{p}_i, \widetilde{\mathbf{x}}_j)) \log \left(1 - \hat{l}_{AP}(\mathbf{p}_i, \widetilde{\mathbf{x}}_j)\right) \log \left(1 - \hat{l}_{AP}(\mathbf{p}_i, \widetilde{\mathbf{x}}_j)\right)$$

egression

intipodal grasp proposal, we regress its offset to GT grasp center and the 'pitch' angle to get a precise grasp.

$$\mathcal{L}_{REG}(\mathbf{p}_i, \widetilde{\mathbf{x}}_j) = \|\Delta_{\widetilde{\mathbf{x}}_j}^{*+} - \Delta_{\widetilde{\mathbf{x}}_j}\| + \frac{1}{K} \sum_{k=1}^K \omega_k |\cos \hat{\phi} - \cos \phi_k^{*+}|$$

lassifier

a grasp classifier to score the predicted grasps, the regressed grasp center \hat{x} , pitch angle $\hat{\phi}$, and $\mathcal{N}(\mathbf{p})$ are ut features.

$$\mathcal{L}_{CLS}(\hat{\mathbf{g}}) = -l_{CLS}^*(\hat{\mathbf{g}}) \log \hat{l}_{CLS}(\hat{\mathbf{g}}) - (1 - l_{CLS}^*(\hat{\mathbf{g}})) \log \left(1 - \hat{l}_{CLS}(\hat{\mathbf{g}})\right)$$

Experiments

Dataset

- 226 CAD models from ShapeNetSem covering 8 categories (bowl, bottle, mug, cylinder, cuboid, tissue box, sodacan, and toy car), 196 objects for training and 30 for test.
- 22.6*M* grasp annotations (~ 100,000 per object, ~ 23.6% positives and ~ 76.4% negatives).
- 1000 RGB-D images per object rendered under arbitrary views.

Rule-based Evaluation

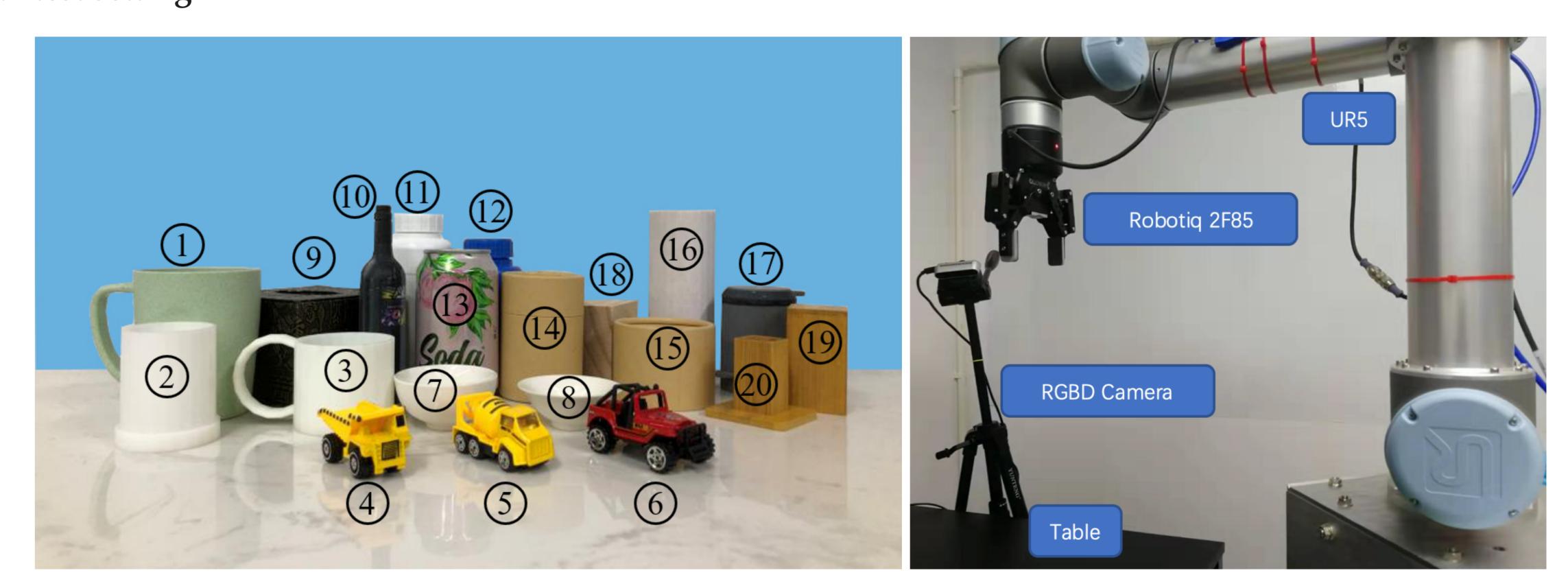
Criterion: (1) $\|\hat{\mathbf{x}} - {\mathbf{x}^{*+}}\|_2 \le 25mm$

Methods		SU	Iccess 1	rate@k	:%	coverage rate@ $k\%$			
		10	30	50	100	10	30	50	100
6 DOF Cracp Not	w/o refinement	0.867	0.850	0.711	0.534	0.039	0.039	0.094	0.132
6-DOF GraspNet	w/ refinement	0.867	0.833	0.733	0.534	0.063	0.063	0.122	0.168
GPNet-Naive	r = 10, b = 22cm	0.372	0.313	0.278	0.215	0.022	0.058	0.100	0.142
GPNet	r = 3, b = 22cm	0.844	0.833	0.800	0.649	0.051	0.107	0.191	0.273
	r = 7, b = 22cm	0.898	0.833	0.822	0.713	0.061	0.113	0.201	0.300
	r = 10, b = 22cm	0.933	0.932	0.820	0.729	0.068	0.144	0.199	0.307
	r = 10, b = 10cm	0.856	0.776	0.695	0.570	0.055	0.112	0.169	0.274
	r = 10, b = 30cm	0.900	0.869	0.846	0.712	0.073	0.157	0.231	0.308

Simulation-based Evaluation

Met	k = 10	k = 30	k = 50	k = 100	-	
GQCNN of planar grasp in DexNet			0.742	0.663	0.464	i -
6-DOF GraspNet	w/o refinement	0.433	0.367	0.311	0.207	
0-DOI Glaspinet	w/ refinement	0.800	0.594	0.508	0.354	·
GPNet-Naive	r = 10, b = 22cm	0.100	0.095	0.083	0.054	·
GPNet	r = 3, b = 22cm	0.644	0.637	0.561	0.371	
	r = 7, b = 22cm	0.767	0.711	0.656	0.557	
	r = 10, b = 22cm	0.900	0.761	0.723	0.588	·
	r = 10, b = 10cm	0.494	0.433	0.393	0.253	·
	r = 10, b = 30cm	0.833	0.702	0.679	0.574	-

Robot Experiment Real test setting:



Objects

Real test results:											
Object index	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	
GPNet	2/3	3/3	3/3	3/3	3/3	3/3	3/3	2/3	3/3	2/3	
6-DOF GraspNet	2/3	2/3	3/3	2/3	1/3	0/3	2/3	3/3	1/3	3/3	
Object index	#11	#12	#13	#14	#15	#16	#17	#18	#19	#20	Overal
GPNet	3/3	2/3	2/3	3/3	3/3	2/3	3/3	0/3	3/3	3/3	85%
6-DOF GraspNet	3/3	3/3	3/3	3/3	2/3	3/3	3/3	0/3	3/3	2/3	73%

(2)	$\ \hat{\theta}$	$-\theta^{*+}$	$\ _{\infty}$	\leq	30°
	••		••		

# Avg. annotations per object	Accuracy
10K	0.650
50K	0.730
100K	0.900
Ratio of training set	Accuracy
1/4	0.522
1/2	0.700
1	0.900

Robot disposition

